Some Hypothesis Tests for the Covariance Matrix when the Dimension is Large Compared to the Sample Size
نویسندگان
چکیده
This paper analyzes whether standard covariance matrix tests work when dimensionality is large, and in particular larger than sample size. In the latter case, the singularity of the sample covariance matrix makes likelihood ratio tests degenerate, but other tests based on quadratic forms of sample covariance matrix eigenvalues remain well-defined. We study the consistency property and limiting distribution of these tests as dimensionality and sample size go to infinity together, with their ratio converging to a finite non-zero limit. We find that the existing test for sphericity is robust against high dimensionality, but not the test for equality of the covariance matrix to a given matrix. For the latter test, we develop a new correction to the existing test statistic that makes it robust against high dimensionality. JEL Classification Numbers: C12, C52.
منابع مشابه
Some Hypothesis Tests for the Covariance Matrix When the Dimension Is Large Compared to the Sample Size by Olivier Ledoit
This paper analyzes whether standard covariance matrix tests work when dimensionality is large, and in particular larger than sample size. In the latter case, the singularity of the sample covariance matrix makes likelihood ratio tests degenerate, but other tests based on quadratic forms of sample covariance matrix eigenvalues remain well-defined. We study the consistency property and limiting ...
متن کاملTests for covariance matrices in high dimension with less sample size
In this article, we propose tests for covariance matrices of high dimension with fewer observations than the dimension for a general class of distributions with positive definite covariance matrices. In one-sample case, tests are proposed for sphericity and for testing the hypothesis that the covariance matrix Σ is an identity matrix, by providing an unbiased estimator of tr [Σ] under the gener...
متن کاملComparison between Frequentist Test and Bayesian Test to Variance Normal in the Presence of Nuisance Parameter: One-sided and Two-sided Hypothesis
This article is concerned with the comparison P-value and Bayesian measure for the variance of Normal distribution with mean as nuisance paramete. Firstly, the P-value of null hypothesis is compared with the posterior probability when we used a fixed prior distribution and the sample size increases. In second stage the P-value is compared with the lower bound of posterior probability when the ...
متن کاملCorrections to LRT on Large Dimensional Covariance Matrix by RMT
Abstract: In this paper, we give an explanation to the failure of two likelihood ratio procedures for testing about covariance matrices from Gaussian populations when the dimension is large compared to the sample size. Next, using recent central limit theorems for linear spectral statistics of sample covariance matrices and of random F-matrices, we propose necessary corrections for these LR tes...
متن کاملSome Tests concerning the Covariance Matrix in High Dimensional Data
In this paper, tests are developed for testing certain hypotheses on the covariance matrix Σ, when the sample size N = n+1 is smaller than the dimension p of the data. Under the condition that (trΣ/p) exists and > 0, as p → ∞, i = 1, . . . , 8, tests are developed for testing the hypotheses that the covariance matrix in a normally distributed data is an identity matrix, a constant time the iden...
متن کامل